ISIC 2018 Leaderboards
Rank 66 total | Team 66 unique teams | Approach | Manuscript | Used External Data 8 yes | Primary Metric Value Jaccard Index | |
---|---|---|---|---|---|---|
1 |
MT
MT
|
MaskRcnn2+segmentation | description |
public_off
No
|
0.802 | |
|
||||||
2 |
Holidayburned
Holidayburned
|
ensemble_with_CRF_v3 | description |
public_off
No
|
0.799 | |
|
||||||
3 |
imsight
imsight
|
Automatic Skin Lesion Segmentation by DCNN | description |
public_off
No
|
0.799 | |
|
||||||
4 |
Tencent Youtu Lab
Tencent Youtu Lab
|
Skin Lesion Segmentation with Adversarial Learning | description |
public_off
No
|
0.798 | |
|
||||||
5 |
NMN_team
NMN_team
|
segmentation_ensembleALL_Th0.80_Tl0.65 | description |
public_off
No
|
0.796 | |
|
||||||
6 |
GPM-UC3M
GPM-UC3M
|
SR FCN Init 2 | description |
public_off
No
|
0.788 | |
|
||||||
7 |
Andrey Sorokin
Andrey Sorokin
|
Mask-RCNN with SGD optimizer | description |
public_off
No
|
0.779 | |
|
||||||
8 |
DC
DC
|
maskrcnn | description |
public_off
No
|
0.777 | |
|
||||||
9 |
Weill Cornell Medicine
Weill Cornell Medicine
|
Deep Unet | description |
public
Yes
|
0.773 | |
|
||||||
10 |
Opsins
Opsins
|
Transfer learning based CNN segmentation | description |
public_off
No
|
0.771 | |
|
||||||
11 |
DAISYLab
DAISYLab
|
Ensemble of four models | description |
public
Yes
|
0.769 | |
|
||||||
12 |
SJTU_MJTC
SJTU_MJTC
|
Deep attention-guided fusion network for lesion segmentation | description |
public_off
No
|
0.765 | |
|
||||||
13 |
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Scie
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Scie
|
Combining FCNs, CRFs and Data Augmentation for Lesion Boundary Segmentation | description |
public_off
No
|
0.761 | |
|
||||||
14 |
Manu Goyal
Manu Goyal
|
Test-D | description |
public_off
No
|
0.760 | |
|
||||||
15 |
Le-Health
Le-Health
|
Mulit-Scale PSPNet | description |
public_off
No
|
0.758 | |
|
||||||
16 |
Li
Li
|
Resnet50 | description |
public_off
No
|
0.758 | |
|
||||||
17 |
BMCV Heidelberg
BMCV Heidelberg
|
A two-step deep learning approach for skin lesion segmentation | description |
public_off
No
|
0.757 | |
|
||||||
18 |
Università degli Studi di Modena e Reggio Emilia (AImage Lab .zip)
Università degli Studi di Modena e Reggio Emilia (AImage Lab .zip)
|
conv-deconv, bagging, data augmentation using GANs. | description |
public
Yes
|
0.755 | |
|
||||||
19 |
Tecnológico de Costa Rica - Comunidad ciencia de los datos
Tecnológico de Costa Rica - Comunidad ciencia de los datos
|
U-Net with CRF post-processing | description |
public_off
No
|
0.754 | |
|
||||||
20 |
Ciklum
Ciklum
|
Dilated U-net | description |
public_off
No
|
0.753 | |
|
||||||
21 |
LTS5
LTS5
|
Fully Convolutional Neural Network using dense block | description |
public
Yes
|
0.747 | |
|
||||||
22 |
CBML University of Piraeus
CBML University of Piraeus
|
Mask R-CNN | description |
public_off
No
|
0.746 | |
|
||||||
23 |
Cleveland Clinic
Cleveland Clinic
|
deep fully convolutional network with adam optimization | description |
public_off
No
|
0.742 | |
|
||||||
24 |
QuindiTech: : Xuan Li, Jizong Peng
QuindiTech: : Xuan Li, Jizong Peng
|
Dilation Residual Net with ensemble (Xuan) | description |
public_off
No
|
0.740 | |
|
||||||
25 |
BIL, NTU
BIL, NTU
|
Deep learning and image processing framework - ensemble 3 | description |
public_off
No
|
0.739 | |
|
||||||
26 |
Nile University - MIIP
Nile University - MIIP
|
Lesion Segmentation using Deep-Nevus Architecture | description |
public_off
No
|
0.738 | |
|
||||||
27 |
BioImaging-KHU
BioImaging-KHU
|
Lesion_Segmentation | description |
public_off
No
|
0.737 | |
|
||||||
28 |
Jia Hua Ng
Jia Hua Ng
|
DEXTR Simulated | description |
public_off
No
|
0.736 | |
|
||||||
29 |
BMIT-USYD
BMIT-USYD
|
Segmentation using Adversarial Learning based Data Argumentation (Ensembled) | description |
public_off
No
|
0.734 | |
|
||||||
30 |
ECUST
ECUST
|
Skin Lesion Segmentation based on Deeply Supervised Salient Object Detection | description |
public_off
No
|
0.733 | |
|
||||||
31 |
Ask Sina
Ask Sina
|
Approach 2 : Min of Max prediction for all 4 Fold | description |
public_off
No
|
0.731 | |
|
||||||
32 |
MIA Group, Sun Yat-sen University
MIA Group, Sun Yat-sen University
|
ensemble multi-scale U-Nets with postprocessing | description |
public_off
No
|
0.730 | |
|
||||||
33 |
WVU
WVU
|
unet-gan-perceptual | description |
public
Yes
|
0.729 | |
|
||||||
34 |
IRCV
IRCV
|
SLSDeep with EPE Loss | description |
public_off
No
|
0.729 | |
|
||||||
35 |
The Homeboy's
The Homeboy's
|
Classifier approach | description |
public_off
No
|
0.728 | |
|
||||||
36 |
RECOD Titans
RECOD Titans
|
Single Model - UNet Trained on Challenge Data Only | description |
public_off
No
|
0.728 | |
|
||||||
37 |
SAIIP-MIA
SAIIP-MIA
|
Residual U-net | description |
public_off
No
|
0.728 | |
|
||||||
38 |
SSC-SJTU
SSC-SJTU
|
Saliency-based Skin Lesion Segmentation by Deep Network | description |
public_off
No
|
0.727 | |
|
||||||
39 |
UNIST_BMIPL
UNIST_BMIPL
|
Multiscale Approach for Lesion Segmentation | description |
public_off
No
|
0.726 | |
|
||||||
40 |
QuindiTech: Xuan Li, Jizong Peng
QuindiTech: Xuan Li, Jizong Peng
|
111 | description |
public_off
No
|
0.726 | |
|
||||||
41 |
Texas A&M Aggies
Texas A&M Aggies
|
Course-to-Fine PSPNet | description |
public_off
No
|
0.726 | |
|
||||||
42 |
uestc_kb545
uestc_kb545
|
DL | description |
public_off
No
|
0.725 | |
|
||||||
43 |
LME
LME
|
Multitask Framework for Skin Lesion Detection and Segmentation | description |
public_off
No
|
0.724 | |
|
||||||
44 |
Mammoth
Mammoth
|
final_test_crf_0.753_upsampling | description |
public_off
No
|
0.715 | |
|
||||||
45 |
AI Toulouse
AI Toulouse
|
Segmentation by GrassNet with rotationORflipORnoise | description |
public_off
No
|
0.712 | |
|
||||||
46 |
Virtual Expertise
Virtual Expertise
|
Unet | description |
public_off
No
|
0.712 | |
|
||||||
47 |
BUPT Pris
BUPT Pris
|
IVU: Improved VGG-Unet model in ISIC 2018 | description |
public_off
No
|
0.711 | |
|
||||||
48 |
LABCIN
LABCIN
|
Blue channel segmentation with Otsu Thresholding and preprocessing techniques | description |
public_off
No
|
0.710 | |
|
||||||
49 |
NTHU CVLab
NTHU CVLab
|
Deep learning with GCN model | description |
public_off
No
|
0.706 | |
|
||||||
50 |
Tandon Titans
Tandon Titans
|
U-net without post-processing | description |
public
Yes
|
0.704 | |
|
||||||
51 |
CDSLab
CDSLab
|
SDI++ | description |
public_off
No
|
0.702 | |
|
||||||
52 |
Redha Ali, Russell C. Hardie, Manawaduge Supun De Silva, and Temesguen Messay Ke
Redha Ali, Russell C. Hardie, Manawaduge Supun De Silva, and Temesguen Messay Ke
|
Combining Deep and Handcrafted Image Features | description |
public_off
No
|
0.698 | |
|
||||||
53 |
Insight Centre for data analytics
Insight Centre for data analytics
|
Deep Residual Architecture for Skin Lesion Segmentation | description |
public_off
No
|
0.697 | |
|
||||||
54 |
Q_PRML_laboratory
Q_PRML_laboratory
|
Using deep encoder-decoder network for skin lesion segmentation | description |
public_off
No
|
0.696 | |
|
||||||
55 |
UnB
UnB
|
Custom U-Net with Resnet34 backbone as encoder- Unet34 256x256 BestDice Strategy | description |
public_off
No
|
0.693 | |
|
||||||
56 |
PA_Tech
PA_Tech
|
Effective u-net model structure and model integration strategy | description |
public
Yes
|
0.689 | |
|
||||||
57 |
medical image analysis lab - SFU
medical image analysis lab - SFU
|
Starshape with dense upsampling | description |
public_off
No
|
0.688 | |
|
||||||
58 |
University of York
University of York
|
Multitask learning, single CNN for all three tasks, segmentation via FCN | description |
public
Yes
|
0.670 | |
|
||||||
59 |
HUST_czj
HUST_czj
|
fully convolutional networks | description |
public_off
No
|
0.667 | |
|
||||||
60 |
Department of Dermatology, University of Rzeszów, Poland
Department of Dermatology, University of Rzeszów, Poland
|
FusionNet | description |
public_off
No
|
0.666 | |
|
||||||
61 |
University of Washington CSE
University of Washington CSE
|
A Deep Fully Convolutional Network for Segmentation of Dermoscopic Images | description |
public_off
No
|
0.665 | |
|
||||||
62 |
University of Dayton, Signal and Image Processing Lab
University of Dayton, Signal and Image Processing Lab
|
Traditional classifier with adaptive threshold guided by SVM regression | description |
public_off
No
|
0.660 | |
|
||||||
63 |
ITAKA
ITAKA
|
U-Net variant | description |
public_off
No
|
0.653 | |
|
||||||
64 |
Signal and Image Processing Lab
Signal and Image Processing Lab
|
Skin Lesion Segmentation using Clustering and Regression for ISIC 2018 | description |
public_off
No
|
0.618 | |
|
||||||
65 |
LAPI, Image Processing and Analysis Laboratory (ETTI, Politehnica, Bucuresti, RO
LAPI, Image Processing and Analysis Laboratory (ETTI, Politehnica, Bucuresti, RO
|
Ensemble of [Global Thresholds on RGB & Gray] and [K-Means clustering] | description |
public_off
No
|
0.590 | |
|
||||||
66 |
Math & Stat Dept., UNC-Greensboro, USA and CSIE Dept., NTNU, Taiwan
Math & Stat Dept., UNC-Greensboro, USA and CSIE Dept., NTNU, Taiwan
|
Persistent homology based segmentation algorithm | description |
public_off
No
|
0.532 | |
|